National Aviation University

Department of Electronics, Robotics, Monitoring and IoT Technologies

Course: "Fundamentals of Analog Electronics"

Experiment 7

"Class-B Power Amplifier"

Prepared by prof. V. Ulansky

Kyiv 2020

OBJECTIVES

1. To construct class-B power amplifier.

2. To simulate the operation of class-B power amplifier using TINA-TI SPICEbased analog simulation program.

3. To measure voltages and currents in all nodes and branches of the circuit.

EQUIPMENT

- 1. Digital multimeter
- 2. Solderless breadboard: BB830T
- 3. Oscilloscope
- 4. Sinusoidal voltage generator
- 5. Power Supply: 12V
- 6. BJT: npn PZT2222AT1, pnp PZT907AT1
- 7. Resistors: $2 \times 187 \Omega$, $1 \times 8 \Omega$
- 9. Capacitor: $2 \times 400 \mu F$

Oscilloscope

Function generator

Control	Parameters	
Start Stop VG1 💌	10.000 <mark>0</mark> k Hz≑	Freq 10kHz
	Image: 4 Edit Sweep On Cont Lin Start Stop Time Num	Ampl3.5∨Offsct0∨Phase0°

Theory

A Class – B audio power amplifier uses one transistor to amplify the positive portion of the input signal and another transistor to amplify the negative portion of the input signal. The class – B audio amplifiers provide higher efficiency and lower output impedance to drive a typically low-impedance load. For example, a speaker load is typically 8Ω .

The circuit of the complementary symmetry amplifier with compensation diodes is shown in Fig. 1(a).

Fig. 1. Complementary symmetry power amplifier with diode compensation (a) and additional emitter resistors for preventing the thermal runaway (b)

Diodes D_1 and D_2 are connected for reducing the fluctuations of V_{BE} with temperature. These diodes should have characteristics similar to those of the transistors and they should be mounted on the same heat sink.

There are three problems in the design of a complementary symmetry amplifier. The first is the crossover distortion. This distortion can be reduced by placing a small resistor R_2 in series with each diode to cause I_{CQ} to be slightly above zero. This causes both amplifiers to amplify the *ac* input signal in the cutoff region.

The second problem is the possibility of thermal runaway, which can be caused by the two complementary transistors having different characteristics or by the value of V_{BE} decreasing at high temperatures. This can lead to a higher collector current, resulting in additional power dissipation and heating. This process continues until the transistor overheats and fails. Thermal runaway is prevented by placing a small resistor in series with each emitter to increase the bias level. With a load of 4 to 8 Ω , each resistor should be approximately 0.5 Ω . With small R_E a feedback appear, which stabilizes the operation of BJT. This circuit topology is shown in Fig. 1(b).

The third problem is the distortion that results if the bias diodes $(D_1 \text{ and } D_2)$ stop conducting. One of the design requirements is to keep the diodes always turned ON. It is important that the diode bias current be large enough to keep the diodes in their forward-biased region for all input voltages.

PROCEDURE

1. Select transistor PZT2222AT1 as shown below.

Image: Solution of the second sec	s Help +				
TI INPN	TI - NPN Bipolar Transistor Label Parameters Type Bulk Temperature (°C) Area factor Device initially OFFDC) Initial E: Voltage (TR) Initial C: Voltage (TR) Fault	11 [Parameters] INPN 0 1 Not Not Used Nore	X Catalog Editor Larayy Tina Model SPICE-BJT Jype PN5916 PN5956 PN5965 PN5965 PN596 PN5965 PN596 PN5965 PN5965 PN596 PN5965 PN596 PN50 PN50 PN50 PN50 PN50 PN50 PN50 PN50		×
	Cancel ? Het		994/1062	Rev. early voltage (M) Bev. early voltage (M) De saturation currert (A) 33.9 ff be saturation currert (A) 33.9 ff V Substrate sat. currert [A] 0 OK X Cancel ?	•

2. Select transistor PZT2907AT1 as shown below.

Basic Switches Meters Sources Semiconductors Spice Macros	₩ J# 1#						
	T1 - PNP Bipolar Transistor		× Katalog	Editor			×
ر.	Label Parameters Type Bulk Tansanatar	T1 (Parameters) IPNP ···· Peleting	Library Tina <u>M</u> odel	•	Tolerance Model Image: None Image: Description Model Parameters Image: Description		
	Temperature Temperature (*C) Area factor Device initially OFF(DC)	0 1 No	SPICE-BJT	• [Jsage: General Purpose PNP Saturation current [A] Forw. emission coeff. [-]	14.1f 1	Î
	Initial B-E voltage (TR) Initial C-E voltage (TR) Fault	Not Used	PN5143 PN5415 PN5416 PN5855		Hev. emission coeff. [-] Emitter resistance [Ohm] Collector resistance [Ohm] Base resistance [Ohm]	1 393m 1 10	
	OK X Cancel ? He	Þ	PN5857 PN5910 PZT2907AT PZTA92T1 PZTA96T1		Forw. early voltage [V] Rev. early voltage [V] b-e saturation current [A] b-c saturation current [A]	56.7 28.3 106f 106f	

3. Select resistors and capacitors as shown below.

🖳 Noname - Schematic Editor

File E	dit Insert	t View	Analysis	T&M	Tools	TI Utilities	Help						
2	1 🖬 🖆			50	T 1%	(X P)	a + 🗄	: 🔍 10	0% 🔻	İ [™]			
< ÷	Ö	ŧ 🤣	Ø Ž	y	-		L_j (L)]€[_~	5 4	-I 🖗	i	(1)	4
Basic	Switches	Meters	Sources	Semicon	ductors	Spice Macro	is l						
Basic	Switches	Meters	Sources	Semicon	ductors	Spice Macro							
Basic	Switches	Meters	Sources	Semicon	ductors	Spice Macro							
Basic	Switches	Meters	Sources	Semicon	ductors	Spice Macro	2						
Basic	Switches	Meters	Sources	Semicon R1 1k	ductors	Spice Macro	18						
Basic	Switches	Meters	Sources	Semicon R1 1k	ductors	C1 1u	21						
Basic	Switches	Meters	Sources	R1 1k	ductors	C1 1u	2(
Basic	Switches	Meters	Sources	R1 1k	ductors	C1 1u	31						

4. Select diodes PRLL4002 as shown below.

iic Switches Meters Sources Semiconductor	s Spice Macros								
	D1 - Diode Label Parameters Type Temperature Temperature [C] Area factor Device inhibly OFF(DC) Inhial voltage (TR) Fault	D1 [Parameters] 1N1183 Relative 0 1 1 No No Not Used None	×	Catalog El Library Tina Model Standard Type PMBD6050 PMBD314 PMLL4148 PMLL4150 PMLL4150 PMLL4157	ditor	Tolerance Model © None Model Parameters Usage: Rectifier IS/5 sturation current N/Emission coefficie BV/Breakdown cut RZ/Zener resistance IBV/Breakdown cut RS/Serial resistance CI0/Linction can	← <u>G</u> eneral [A] nt[-] ge [V] (Ohm] ent [A] [D]	2.85n 1.87 100 10 10u 98.5m 16.5n	
	OK X Cancel ? He	p		PMLL4446 PMLL4448 PRLL4001 PRLL4002	~	VJ/Junction potentia MJ/Grading coeff. FC/Capacitance coe TT/Transit time	(-) [·] ff. [·] \$]	1.86 576m 500m 25.9n	-

5. Select sinusoidal voltage generator (3.5 V, 10 kHz) as shown below.

🖳 Noname - Schematic Editor												
	~ \$ + <u></u> 3€ 3€ →	<u>∽⊈</u> ∽[∳]										
Basic Switches Meters Sources Semico	onductors Spice Macros											
Çi Voi	51 - Voltage Generator	/G1	×	Signal	Editor							×
	arameters CLevel (V) ignal netral resistance (Dhm) 3 state ault W CK X Cancel ? Help	Parameters)			= 1/f = 100u		Amplitude [\ Frequency [Phase [deg]	(P)		3.5 10k 0	Signal (t)	
								ОК	×	Cancel	?	Help

6. Select voltage pin to as shown below.

Schematic Editor	-	ø ×	(
The tort inset view Analysis town tools informes Hep	a I Mahara Dia		-
			1
<u>רו דו /u>			1
Basic Switches Meters Sources Semiconductors Spice Macros			
			í.

7. Construct the circuit of the class-B power amplifier as shown in Fig. 2.

Fig. 2. Class-B power amplifier circuit diagram.

8. Select transient mode as shown below.

🖳 Po	ower_A	mplifie	r - Scher	matic Edito	or								
File	Edit	Insert	View	Analysis	T&M	Tools	TI Utilities	Help					
2	Q E	3 🖆	<u> <u></u></u>	ERC						10	0% 🔻] 📫	ĸ
	<u>-</u> (기북	0	Mo	de			Ctrl+Alt+M	I	[_~	∮	-1	(C)
Basic	s Swi	tches	Meters	Sele Set	ct Contr Analysis	ol Objec Parame	:t ters	Ctrl+Alt+P	•				
				DC	Analysis				>				
				AC	Analysis				>				
				Trar	sient			Ctrl+Alt+T					
				Stea	idy State	Solver							
				Fou	rier Anal	ysis			>				
				Noi	se Analy	sis		Ctrl+Alt+N	I				
				Opt	ions			Ctrl+Alt+O					

9. Choose Start display and Stop display time-points.

🖳 Pov	ver_Amplifi	ier - Sche	matic Edito	r						
File I	Edit Insert	t View	Analysis	T&M	Tools TI U	Itilities	Help			
2	2 日 🗳	60			T 154	600	+		٩	00%
\ ÷	· <mark>0</mark> =	F 🧭	V 🕺	·~~	≱ +⊦	-m-]:	m_ 4	}. ₹]¶[->-	- 15/2
Basic	Switches	Meters	Sources	Semicond	luctors Spic	e Macros				
										1:::
		1111 1	ransient An	alysis					×	:::
			<u>S</u> tart display	,	0		[8]		ОК	
			E <u>n</u> d display		500u		[8]	×	Cancel	
			 Calcul C Use in C Zeroi 	ate opera itial cond nitial valu	ating point itions es			?	<u>H</u> elp	
			☑ <u>D</u> raw e:	citation						
		::::L								

10. Press the buton OK and display the input and output waveforms of the amplifier as shown in Fig.

Fig. 3. Input and output waveforms of the class-B power amplifier.

11. Select voltmeter as shown below.

12. Connect voltmeter across the load resistor as shown in Fig. 4.

Fig. 4. Connection of the voltmeter VM1 across the load.

13. Select AC analysis as shown below.

🖳 Power_Amplifier - Scher	matic Editor			
File Edit Insert View	Analysis T&M Tools TI	Utilities Help		
🛎 🔇 🗖 🖆 🗳	ERC		€ 100% - ∯К	
· · · · · · · · · · · · · · · · · · ·	Mode Select Control Object	Ctrl+Alt+M	<u>،</u> ->- 54 [->- 54 [->- 1 0 10 0	® 🕸 🗌
Basic Switches Meters	Set Analysis Parameters	s Ctrl+Alt+P		
	DC Analysis	>		· · · · · · · · · · · · · · · · · · ·
	AC Analysis	>	Calculate nodal voltages	1
	Transient	Ctrl+Alt+T	Table of AC results	
	Steady State Solver		AC Transfer Characteristic	Ctrl+Alt+A
	Fourier Analysis	>		
	Noise Analysis	Ctrl+Alt+N	· · · · · · · · · · · · · · · · · · ·	
	Options	Ctrl+Alt+O		

12. Analyze nodal voltages and branch currents in the table of Fig. 4.

Fig. 5. Displayed nodal voltages.

13. Calculate the voltage and current gain of the amplifier.

Reference

1. A.S. Sedra and K.S. Smith, "Microelectronic circuits", 5th ed., New York: Oxford University Press, 2004, 1283 p.