National Aviation University

Department of Electronics, Robotics, Monitoring and IoT Technologies

Course: "Fundamentals of Analog Electronics" Experiment 4

"Common Collector Amplifier"

Prepared by prof. V. Ulansky

OBJECTIVES

- 1. To measure the voltage and current gains of the CC amplifier.
- 2. To measure the input impedance of the CC amplifier.
- 3. To simulate the CC amplifier using MULTISIM software.

EQUIPMENT

Digital multimeter: Agilent 34401A
 Solderless breadboard: BB830T


3. Oscilloscope: HAMEG HMO1024

4. Sinusoidal generator5. Power Supply: 12V

6. BJT: BC238B

7. Resistors: $2 \times 8.2 \text{ k}\Omega$, $2 \times 1.2 \text{ k}\Omega$

8. Potentiometer: $100 \text{ k}\Omega$ 9. Capacitor: $2 \times 10 \mu\text{F}$

Theory

The circuit of a common-collector (CC) amplifier is shown in Fig. 1.

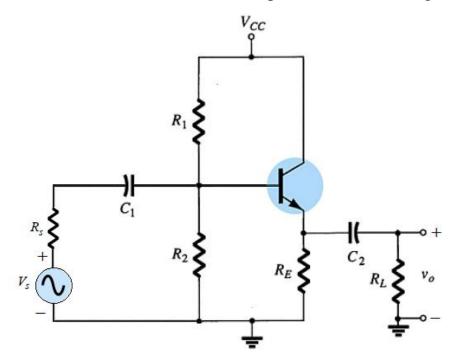


Fig. 1 Common-collector amplifier circuit

The ac equivalent circuit of the CC amplifier is shown in Fig. 2. For converting the equivalent circuit of Fig. 2 into an equivalent electrical circuit, the transistor must be replaced by its small-signal model as shown in Fig. 3.

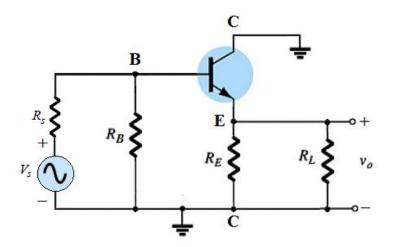


Fig. 2 AC equivalent circuit of a CC amplifier

The complete CC small-signal model of the BJT with CE h-parameters has been substituted and the final network redrawn as shown in Fig. 4.

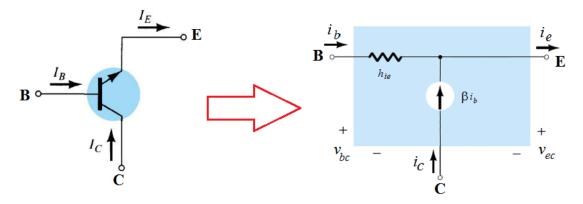


Fig. 3 Replacement of transistor with a simplified small-signal model

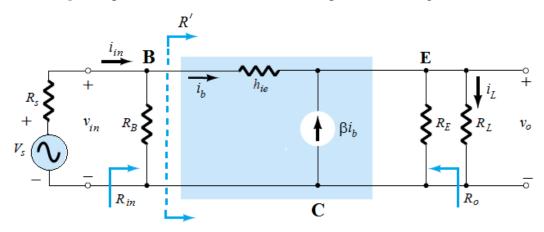


Fig. 4 Small-signal model of the CC amplifier in mid frequency range

Input Resistance, Rin

Let us begin by finding the resistance to the right of the dashed line in Fig. 4

$$R' = \frac{v_{in}}{i_B}$$

where

$$v_{in} = i_B h_{ie} + (1 + \beta) i_B (R_E || R_L)$$

Now assuming that β is large $(\beta + 1 \approx \beta)$, we have

$$v_{in} = i_B \left(h_{ie} + \beta \left(R_E \| R_L \right) \right)$$

Thus,

$$R' = h_{ie} + \beta (R_E || R_L)$$

Now solving for R_{in} we have

$$R_{in} = R_{B} \| R' = R_{B} \| [\beta h_{ib} + \beta (R_{E} \| R_{L})] = \frac{R_{B} [h_{ib} + (R_{E} \| R_{L})]}{R_{B} / \beta + h_{ib} + (R_{E} \| R_{L})}$$

If $h_{ib} \ll R_E || R_L$, then h_{ib} can be neglected and

$$R_{in} = R_B \| \left[\beta \left(R_E \| R_L \right) \right]$$

Current Gain, Ai

The current gain is defined as

$$A_i = \frac{i_L}{i_{in}}$$

where

$$i_B = i_{in} \frac{R_B}{R_B + h_{ie} + \beta \left(R_E \| R_L\right)}$$

$$i_L = \beta i_B \frac{R_E}{R_E + R_I}$$

and

$$i_{in} = i_B \frac{R_B + h_{ie} + \beta \left(R_E \| R_L\right)}{R_B}$$

Substituting i_L and i_{in} into equation for A_i , gives

$$A_{i} = \beta i_{B} \frac{R_{E}}{R_{E} + R_{L}} / i_{B} \frac{R_{B} + h_{ie} + \beta (R_{E} || R_{L})}{R_{B}} = \frac{\beta R_{E} R_{B}}{(R_{E} + R_{L})(R_{B} + h_{ie} + \beta (R_{E} || R_{L}))}$$

and finally

$$A_{i} = \frac{R_{E}R_{B}}{(R_{E} + R_{L})[R_{B}/\beta + h_{ib} + (R_{E}||R_{L})]}$$
(1)

Equation (1) is the general expression for current gain. If $h_{ib} \ll R_E ||R_L|$, then

$$A_i = \frac{\beta R_E R_B}{\left(R_E + R_L\right) \left[R_B + \beta \left(R_E \| R_L\right)\right]}$$

If $R_B \ll \beta(R_E||R_L)$, then

$$A_{i} \approx \frac{\beta R_{E} R_{B}}{\left(R_{E} + R_{L}\right) \left(\beta \left(R_{E} \| R_{L}\right)\right)} = \frac{\beta R_{E} R_{B} \left(R_{E} + R_{L}\right)}{\left(R_{E} + R_{L}\right) \beta R_{E} R_{L}} = \frac{R_{B}}{R_{L}}$$

Note that the current gain is positive for the CC amplifier, since i_{in} is in phase with i_L .

Voltage Gain, Av

We find the voltage gain from the gain impedance formula, input resistance, and the current gain:

$$A_{V} = A_{i} \frac{R_{L}}{R_{in}} \tag{2}$$

$$R_{in} = \frac{R_{B} (h_{iB} + R_{E} || R_{L})}{R_{B} / \beta + h_{ib} + R_{E} || R_{L}}$$

(3)

$$A_{i} = \frac{\beta R_{E} R_{B}}{(R_{E} + R_{L})(R_{B} + h_{ie} + \beta(R_{E} || R_{L}))}$$
(4)

Substituting (3) and (4) into 2 gives

$$A_{V} = \frac{R_{E}R_{B}R_{L}}{\left(R_{E} + R_{L}\right)\left[R_{B}/\beta + h_{ib} + \left(R_{E} \| R_{L}\right)\right]} \times \frac{\left[R_{B}/\beta + h_{ib} + \left(R_{E} \| R_{L}\right)\right]}{R_{B}\left[h_{ib} + \left(R_{E} \| R_{L}\right)\right]}$$

and finally

$$A_V = \frac{R_E \| R_L}{h_{ib} + \left(R_E \| R_L \right)}$$

Since h_{ib} is usually small compared to $R_E//R_L$, we can approximate the voltage gain as

$$A_V \approx 1$$

Output Resistance, Ro

For finding R_0 we shall use the CC equivalent circuit of the BJT with the CB h-parameter h_{ib} as shown in Fig. 5.

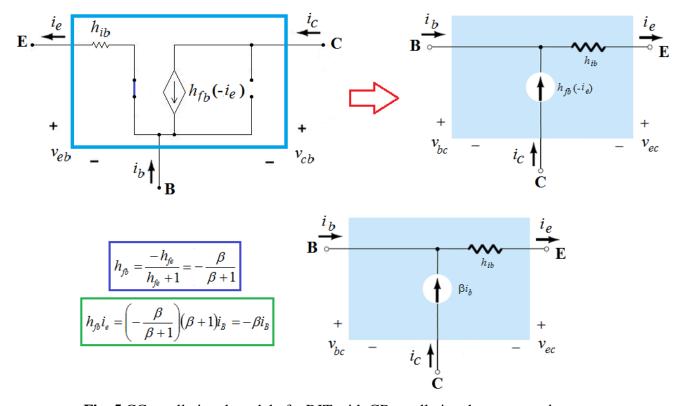


Fig. 5 CC small-signal model of a BJT with CB small-signal parameter h_{ib} The small-signal equivalent circuit of the CC amplifier is shown in Fig. 6.

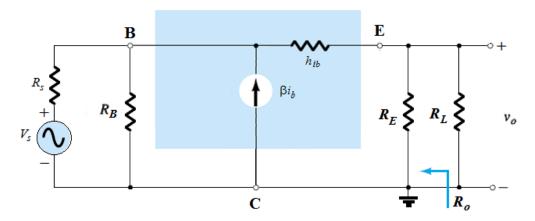
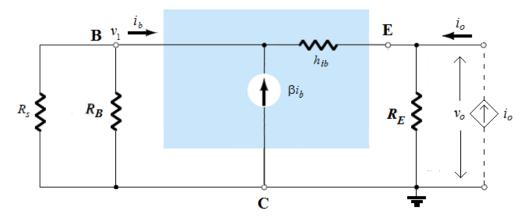



Fig. 6 CC amplifier small-signal equivalent circuit

The output resistance is determined with assumption that $R_L = \infty$. In this case we can represent output current by an ideal current source, i_o , with infinity internal resistance. The input ac source must be set to 0. The corresponding small-signal model is shown in Fig. 7.

Fig. 7 Small-signal model for finding output resistance of the CC amplifier We write the following equations for the circuit:

$$i_b = \frac{0 - v_1}{R_S \| R_B} = -\frac{v_1}{R_S \| R_B} \tag{5}$$

$$v_1 - v_o = (1 + \beta)h_{ib}i_b \tag{6}$$

$$i_o = \frac{v_o}{R_E} + \frac{v_o - v_1}{h_{ib}} \tag{7}$$

From Eq. (5) and Eq. (6) we find v_0

$$v_{1} = -i_{b}(R_{s} || R_{B})$$

$$v_{o} = v_{1} - (1 + \beta)i_{b}h_{ib} = -i_{b}(R_{s} || R_{B}) - (1 + \beta)i_{b}h_{ib}$$

$$v_{o} = -i_{b}[(R_{s} || R_{b}) + (1 + \beta)h_{ib}]$$
(8)

Substituting $v_1 - v_o$ and v_o from Eq. (6) and Eq. (8) into Eq. (7), gives

$$i_{0} = -\frac{i_{b}}{R_{E}} \left[\left(R_{s} \| R_{B} \right) + \left(1 + \beta \right) h_{ib} \right] - \frac{\left(1 + \beta \right) i_{b} h_{ib}}{h_{ib}} = -i_{B} \left\{ \frac{1}{R_{E}} \left[\left(R_{s} \| R_{B} \right) + \left(1 + \beta \right) h_{ib} \right] + 1 + \beta \right\}$$
(9)

The output resistance of the CC configuration is

$$R_{0} = \frac{v_{o}}{i_{o}} = \frac{-i_{b} \left[\left(R_{s} \| R_{b} \right) + \left(1 + \beta \right) h_{ib} \right]}{-i_{b} \left\{ \frac{1}{R_{E}} \left[\left(R_{s} \| R_{b} \right) + \left(1 + \beta \right) h_{ib} \right] + 1 + \beta \right\}} = \frac{R_{E} \left[\left(R_{s} \| R_{b} \right) + \left(1 + \beta \right) h_{ib} \right]}{\left(R_{s} \| R_{B} \right) + \left(1 + \beta \right) h_{ib} + \left(1 + \beta \right) R_{E}} = \frac{R_{E} \left[h_{ib} + \frac{\left(R_{s} \| R_{b} \right)}{\beta + 1} \right]}{R_{E} + h_{ib} + \frac{R_{S} \| R_{b}}{\beta + 1}}$$

Using approximation $\beta + 1 \approx \beta$, we have

$$R_o = \frac{R_E \left(h_{ib} + \frac{R_s \|R_B}{\beta}\right)}{R_E + h_{ib} + \frac{R_s \|R_B}{\beta}} = R_E \left\| \left(h_{ib} + \frac{R_s \|R_B}{\beta}\right) \right\|$$

PROCEDURE

- 1. Construct the CC amplifier circuit (see Fig. 8) on the solderless breadboard.
- 2. Turn on 12 V power supply.
- 3. Adjust the FREQUENCY control of signal generator so the output is 1 kHz sinusoidal waveform.
- 4. Adjust the 100 k Ω potentiometer (R_s) fully counterclockwise (thus making it 0).
- 5. Adjust the amplitude of the generator output voltage so that the amplifier output voltage amplitude V_0 is 1 V.
- 6. Measure the voltage amplitude going from the generator into the amplifier (V_i). Record the voltage measurement.

- 7. Use the formula $A_V = V_O/V_i$ to calculate the voltage gain. Record the voltage gain calculation.
- 8. Measure the rms current flowing from the generator into the amplifier $(I_{i,rms})$. Record the input current measurement.
- 9. Measure the rms current flowing through the 1-k Ω load resistor ($I_{L,rms}$). Record the load current measurement.
- 10.Use the formula $A_{\rm I} = I_{\rm L,rms}/I_{\rm i,rms}$ to calculate the current gain. Record the current gain calculation.
- 11.Readjust the 100 k Ω potentiometer (R_s) so the amplifier output voltage amplitude is 0.5 V.
- 12. Turn off the power supply, and measure the resistance between terminals 1 and 2 of the 100 k Ω potentiometer (R_s). Record this resistance value. It is equal to the amplifier input resistance R_{in} .
- 13.Use the formula $I_{L,rms} = V_O/(\sqrt{2}R_L)$, and the values of V_O (1 V) and R_L (1 $k\Omega$) to calculate the output current. Record your current calculation
- 14.Using the formula $I_{i,rms} = V_i/(\sqrt{2}R_{in})$, and the values of V_i (step 6) and R_{in} (step 12) that you recorded earlier to calculate the input rms current. Record the input current calculation.
- 15.Use the formula $A_P = A_V A_I$ to calculate the powert gain of the amplifier. Record the power gain calculation.

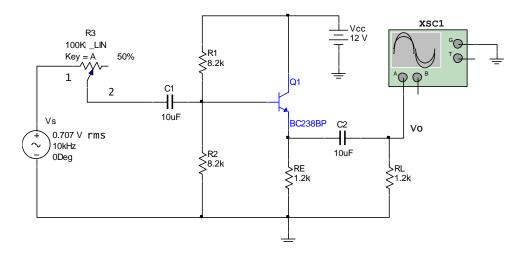


Fig. 8 Experimental CC amplifier circuit diagram

Reference

1. A.S. Sedra and K.S. Smith, "Microelectronic circuits", 5th ed., New York: Oxford University Press, 2004, 1283 p.