MSc graduation work at IRCTR

And some background on IRCTR

Synopsis

• **IRCTR = fundamental knowledge × cutting edge technology**
 – who we are
 – what we do
 – how we do

• **MSc++: enjoy your work & build-up your career**

• **A selection from the current MSc project offer**
Synopsis

- IRCTR = fundamental knowledge × cutting edge technology
 - who we are
 - what we do
 - how we do
- MSc++: enjoy your work & build-up your career
- A selection from the current MSc project offer

Who we are
The International Research Centre for Telecommunications and Radar, **IRCTR**

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)
Delft University of Technology

Delft Technical University of Technology

- oldest and largest technical university of The Netherlands
- around 13,000 students in 8 faculties
- international Master Courses; language: English
- around 5,000 staff members
- extended laboratories and facilities

TU Delft campus area
Overview on European cooperation

IRCTR profile

- Research Centre of Delft University of Technology
- Established for project driven research
- Brings applied pre-competitive research to industries and organizations
- Internationalization
- Supported by Dutch Government
IRCTR - general structure

- Radar
- Ground Penetrating Radar (GPR)
- Antennas/ applied electromagnetics
- Remote Sensing
- Telecommunications - Centre for Wireless Personal Communication
- Radio-navigation
IRCTR – radar/ GPR & antennas

Radar

• Mission statement:

 To understand physical effects (i.e. the propagation and scattering of electromagnetic waves) and the technology required to define, launch, receive, and process waveforms capable of extracting features from the received echoes; the theoretical research is complemented with properly designed experiments, leading to advanced experimental facilities.

• Components:

 – study of frequency and/or phase modulated waveforms, e.g. frequency and polarization agility ➔ high spatial resolution + multi-parameter descriptors of objects

 – future applications: a radar that operates as a communication device by coding its waveform
IRCTR – radar/ GPR & antennas

Ground penetrating radar (GPR)

• Mission statement:
 The development of Ultra-Wideband (UWB) technology for detection, ranging, positioning and classification of targets

Components:
 – ground penetrating radar: video impulse GPR and a stepped frequency continuous wave (SFCW) radar
 – UWB radar for human beings detection
 – UWB positioning and communications
 – improved GPR-antennas (including adaptive antennas)
 – new methods of subsurface imaging based on interferometry and polarimetry
 – the development of classification algorithms
IRCTR - radar/ GPR & antennas

Antennas/ applied electromagnetics

• Mission statement:

To create a bridge between the people involved in the theoretical investigations and those focusing on experimental validation

Eng goal: to master the complete chain: model ➔ analysis + optimisation ➔ physical implementation ➔ measurement

IRCTR - radar/ GPR & antennas

Antennas/ applied electromagnetics

• Components:
 – development of models (focus on time-domain approaches)
 – identifying the most adequate computational techniques to be employed for the analysis and optimisation of antennas
 – understanding the technological requirement for manufacturing them
 – streamlining the measurement methodologies
IRCTR - remote sensing

Atmospheric radar remote sensing

• Mission statement:

To develop new tools and methodologies for the observation of atmospheric phenomena with the aim to enhance the understanding of meteorological processes and to improve climate predictions

• Components:
 – electromagnetic scattering
 – sensor synergy
 – signal processing
 – radar technology
Radar earth observation

• Mission statement:

The development of new Synthetic Aperture Radar (SAR) technologies, be it for observation from space or the air.

• Components:
 – frequency-modulated, continuous-wave (FM-CW) radar based systems
 – P-band SAR systems
 – enhanced information extraction from radar data, for instance through radar signature studies and simulation
 – new applications in high-resolution and/or polarimetric imaging, moving-target indication and wind vector determination over water surfaces
Synopsis

• IRCTR = fundamental knowledge × cutting edge technology
 – who we are
 – what we do
 – how we do

• MSc++: enjoy your work & build-up your career

• A selection from the current MSc project offer

IRCTR - research activities

• Strategic research objectives:
 – radar
 – wireless communication

• Work philosophy:
 – large research programmes, often encompassing more specific projects
 – dedicated (smaller scale) projects
 – own initiatives → highly innovative domains
 – participation in wide international consortia
Projects - radar & GPR

Advanced Re-Locatable Multi-Sensor System for Buried Landmine Detection:
- time span: 1999-2006
- result: 2 operational radars
- One impulse radar and one SFCW radar

Projects - radar for atmospheric research

The transportable radar system for atmospheric measurements - TARA:
- based on the FM-CW radar principle
- measures clouds and precipitation as well as clear-air turbulence
- operational since 2001
Projects - agile radar

PARSAX
Polarimetric Agile Radar in S- And X-band

System Design and manufacturing of a Radar Allowing simultaneous BSM estimation of Non-stable Objects
The PARSAX radar developed in the project will be used for testing and validating a new method to separate targets and clutter by using polarimetric properties of backscattered radar signals.

- Generate and apply the orthogonal coded signals.
- Research on scattering fundamentals and experimental verifications by realizing a dual-transmit/dual-receive radar.

1. Generation of orthogonal coherent signals with a large BT product and 50MHz spectrum width in the 2 frequency bands: -60dB spurious level. (S-band, 3315+/-25MHz and X-band, [9700~10000]+/-25MHz).
2. Coherent digital processing of the received signals in at least 70dB dynamic range for signal spectrum width > 50MHz.
3. Zoom mode for the X-band extension (300MHz sweep generated for high resolution mode).
Functional diagram of S-(X-)band transmitter

Projects - agile radar

Functional diagram of S-(X-)band receiver
Parameters of PARSAX radar signals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FM signal</th>
<th>FM signal (modulated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier frequency</td>
<td>1200 MHz</td>
<td>1200 MHz</td>
</tr>
<tr>
<td>Peak transmitted power</td>
<td>100 W</td>
<td>100 W</td>
</tr>
<tr>
<td>Signal energy</td>
<td>200 Hz</td>
<td>200 Hz</td>
</tr>
<tr>
<td>Signal type</td>
<td>PCM signal modulated by 8-ary sequence</td>
<td>LFM signal/linear frequency modulation</td>
</tr>
<tr>
<td>Sequence length</td>
<td>20 ns</td>
<td>20 ns</td>
</tr>
<tr>
<td>Doppler frequency</td>
<td>200 Hz</td>
<td>200 Hz</td>
</tr>
<tr>
<td>Signal spectrum width</td>
<td>20 MHz</td>
<td>20 MHz</td>
</tr>
<tr>
<td>Signal duration</td>
<td>100 ns</td>
<td>100 ns</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>200 MHz</td>
<td>200 MHz</td>
</tr>
<tr>
<td>RF product</td>
<td>50 MHz</td>
<td>50 MHz</td>
</tr>
<tr>
<td>Range resolution</td>
<td>3 m</td>
<td>3 m</td>
</tr>
<tr>
<td>Number of integration periods for Doppler processing</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Doppler velocity resolution</td>
<td>0.07 m/s</td>
<td>0.07 m/s</td>
</tr>
<tr>
<td>Integrated time</td>
<td>0.07 m/s</td>
<td>0.07 m/s</td>
</tr>
</tbody>
</table>

Projects - agile radar

- **Signals generation**
 - Generation of codes sequence (I-Q quadratures) by means of DDS
 - DAC transformation into two analogue signals
 - Generation of modulated oscillators by means of analogue quadrature modulator

- **Algorithm of reception**
 - Transformation of RF oscillation into codes stream as a result of time and amplitude sampling by fast ADC
 - Estimation of the signal complex envelope described by pairs of IQ-components
Projects - agile radar

Airborne Ka-Band FM-CW SAR System:
- low-cost imaging radar systems of high resolution
- operation from very small, possibly even unmanned, airborne platforms
UWB security and communications

Ad hoc networking & Positioning using time difference
Masts calibrate using satellite positioning
Temporary mast mounted UWB radio
Display of personnel locations

Projects - antennas/ applied EM

Antennas
Transmitting Antenna
Pulse Generator Head
Wireless Triggering Line
Antenna Under Test

Antenna Pattern
Personal Computer
Digital Sampling Oven
Projects - antennas/ applied EM

Wide Band Sparse Element Array Antenna (WiSE):
- elementary radiators design
- non-periodic placement + interleaving
- manufacturing
- measurement
Projects – antennas/ applied EM

Time-domain investigation of antenna systems:
- the pulsed-field multiport antenna system reciprocity relation by means of a time-domain approach

Projects – remote sensing

New radar system for the study of light rain:
- system design
- signal processing
- observation strategies
Projects - remote sensing

Radar observation studies:
- data processing
- data analysis
- image processing

Parameter estimation:
- sensor fusion
- retrieval techniques
- application
Synopsis

- IRCTR = fundamental knowledge × cutting edge technology
 - who we are
 - what we do
 - how we do

- MSc++: enjoy your work & build-up your career

- A selection from the current MSc project offer

The staff

- 3 Professors
- 2 Associate Professors
- 3 Assistant Professors
- 11 supporting/ technical staff
- 17 PhD students

A united, well honed TEAM
Measurement facilities

• Delft University Chamber for Antenna Test (DUCAT)

• Millimetre wave measurement facilities

 Hewlett-Packard network vector analyzer
 up to 110 GHz

 ABmm network vector analyzer
 up to 350 GHz
Software resources

In-house developed software

Synopsis

• IRCTR = fundamental knowledge × cutting edge technology
 – who we are
 – what we do
 – how we do

• MSc++: enjoy your work & build-up your career

• A selection from the current MSc project offer
The work environment

• IRCTR - a highly international construction:
 – multi-national staff
 – many visiting/ exchange students
 – frequent visits of reputed scientists

• Interested in placements abroad? Make use of our international network of collaborations

• Direct access to measurement facilities

We help you build-up your CV

The Pulsed-Field Multiport Antenna System
Reciprocity Relation – A Time-Domain Approach

Adriaan T. de Hoop, Member, IEEE, Valerio Tomazzetti, and Leon Van Bladel

Abstract—A direct time-domain approach to the derivation of
the pulsed electromagnetic field multiport antenna system reciprocity theorem is presented. The theorem introduces the field and system properties in two states: the transmitting state and the receiving state. Two types of antenna systems are discussed: the Kirchhoff circuit one whose local properties are described in terms of multipole Kirchhoff circuits and the waveguide one whose ports consist of multipole guiding waveguide sections.

A. T. de Hoop is with the Laboratory of Electromagnetic Research, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands (e-mail adriaan.dehoop@tudelft.nl). V. Tomazzetti is with Dipartimento di Ingegneria Elettronica ed Energia, Università degli Studi di Salerno, Fisciano, Italy (e-mail valerio.tomazzetti@unisa.it). L. Van Bladel is with the Antennas and Electromagnetic Systems Research Centre, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands (e-mail leon.vanbladel@tudelft.nl).

Keywords—Antenna theory, reciprocity relation, time domain, equivalent circuit.

Scientific publications in high standard journals:

– MSc student on a Socrates exchange programme obtained MSc degree with highest honours
– manuscript submitted to IEEE Transactions on Antennas and Propagation

Manuscript received: 12 January 2021
We help you build-up your CV

Conference proceeding publications:
- accepted full paper at the 1st European Conference on Antennas and Propagation, EuCAP 2006, Nice

- accepted full paper
- presentation at the 3rd European Radar Conference, EuRAD 2006, Manchester
Synopsis

- IRCTR = fundamental knowledge × cutting edge technology
 - who we are
 - what we do
 - how we do
- MSc++: enjoy your work & build-up your career
- A selection from the current MSc project offer

MSc projects - radar

- **Title of the project:** New waveforms for Radar -1
- **Subtitle:** Digital matched filtering of the FMCW signals
 - an FPGA based approach
- **Tutor:** Dr O. Krasnov
- **Professor:** Prof. P. van Genderen
- **Description of the project:**
 To develop, model and optimize the FPGA based implementation of the real time algorithm for the polarimetric FMCW radar
MSc projects - radar

• **Title of the project:** New waveforms for Radar -2
• **Subtitle:** Optimal orthogonal PCM codes for the PARSAX polarimetric radar
• **Tutor:** Dr O. Krasnov
• **Professor:** Prof. P. van Genderen
• **Description of the project:**
 The modelling, analysis and selection of the pairs of codes with a given length, which are optimal for the best orthogonality in the whole predefined range of time delays

MSc projects - radar

• **Title of the project:** Design of the hardware circuits for the real-time calibration of the polarimetric PARSAX radar
• **Tutor:** Dr O. Krasnov
• **Professor:** Prof. P. van Genderen
• **Description of the project:**
 To develop, model and analyse the interchannel transmitter synchroniser and calibration circuits
MSc projects - antennas/ applied EM

- **Title of the project:** Pulsed electromagnetic wave propagation along a closed waveguide – A pulse distortion analysis
- **Supervisor:** Dr.ing. I. E. Lager
- **Scientific advisor:** Prof. Dr. Ir. A.T. de Hoop (emeritus professor, Lorentz chair)
- **Description of the project:**
 The explored topic is highly innovative; the contents is primarily theoretic, but has a large applicative potential

MSc projects - antennas/ applied EM

- **Title of the project:** Pulsed-field smart antenna systems analysis
- **Supervisor:** Dr.ing. I. E. Lager
- **Scientific advisor:** Prof. Dr. Ir. A.T. de Hoop (emeritus professor, Lorentz chair)
- **Description of the project:**
 The explored topic is highly innovative; the investigations focus on the development of theoretical models; the application area can be found in the impulse radio (an extremely hot topic in communications)
MSc projects - antennas/ applied EM

• Title of the project: Electromagnetic detection and ablation of female breast cancer
• Supervisor: Dr.Ir. B. J. Kooij
• Scientific advisor: Dr.ing. I. E. Lager
• Description of the project:
The explored topic has a very high societal impact; the project concerns a feasibility study, and assumes a numerical analysis of a highly inhomogeneous domain; the project is part of a cooperation with the Universitair Medisch Centrum Utrecht

MSc projects - remote sensing

• Title of the project: Signal processing for a turbulence radar
• Supervisor: Dr H. Russchenberg
• Scientific/technical advisor: C. Unal
• Description of the project:
IRCTR is developing a new technique to routinely measure turbulence in the atmosphere; the information can be applied in aviation safety, and more generally: in atmospheric sciences
MSc projects - remote sensing

• Title of the project: Space-based radar observations of clouds
• Supervisor: Dr. H. Russchenberg
• Scientific/ technical advisor: Dr. O. Krasnov
• Description of the project:
 Clouds are very important regulators of radiation in the atmospheres; however, their role in the climate systems is far from understood; in fact, it is the most unsure element in climate predictions.